Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease.

Identifieur interne : 000144 ( Main/Exploration ); précédent : 000143; suivant : 000145

Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease.

Auteurs : Ryan A. Blaustein [États-Unis] ; Graciela L. Lorca [États-Unis] ; Julie L. Meyer [États-Unis] ; Claudio F. Gonzalez [États-Unis] ; Max Teplitski [États-Unis]

Source :

RBID : pubmed:28341678

Descripteurs français

English descriptors

Abstract

Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused by Liberibacter asiaticus, Liberibacter americanus, and Liberibacter africanus The microbial communities of leaves (n = 94) and roots (n = 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance of Liberibacter spp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship between Liberibacter spp. and members of the Burkholderiaceae, Micromonosporaceae, and Xanthomonadaceae This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.IMPORTANCE This study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.

DOI: 10.1128/AEM.00210-17
PubMed: 28341678
PubMed Central: PMC5440699


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease.</title>
<author>
<name sortKey="Blaustein, Ryan A" sort="Blaustein, Ryan A" uniqKey="Blaustein R" first="Ryan A" last="Blaustein">Ryan A. Blaustein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA rblauste@ufl.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lorca, Graciela L" sort="Lorca, Graciela L" uniqKey="Lorca G" first="Graciela L" last="Lorca">Graciela L. Lorca</name>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Julie L" sort="Meyer, Julie L" uniqKey="Meyer J" first="Julie L" last="Meyer">Julie L. Meyer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Claudio F" sort="Gonzalez, Claudio F" uniqKey="Gonzalez C" first="Claudio F" last="Gonzalez">Claudio F. Gonzalez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teplitski, Max" sort="Teplitski, Max" uniqKey="Teplitski M" first="Max" last="Teplitski">Max Teplitski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28341678</idno>
<idno type="pmid">28341678</idno>
<idno type="doi">10.1128/AEM.00210-17</idno>
<idno type="pmc">PMC5440699</idno>
<idno type="wicri:Area/Main/Corpus">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000142</idno>
<idno type="wicri:Area/Main/Curation">000142</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000142</idno>
<idno type="wicri:Area/Main/Exploration">000142</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease.</title>
<author>
<name sortKey="Blaustein, Ryan A" sort="Blaustein, Ryan A" uniqKey="Blaustein R" first="Ryan A" last="Blaustein">Ryan A. Blaustein</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA rblauste@ufl.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lorca, Graciela L" sort="Lorca, Graciela L" uniqKey="Lorca G" first="Graciela L" last="Lorca">Graciela L. Lorca</name>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Julie L" sort="Meyer, Julie L" uniqKey="Meyer J" first="Julie L" last="Meyer">Julie L. Meyer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Claudio F" sort="Gonzalez, Claudio F" uniqKey="Gonzalez C" first="Claudio F" last="Gonzalez">Claudio F. Gonzalez</name>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teplitski, Max" sort="Teplitski, Max" uniqKey="Teplitski M" first="Max" last="Teplitski">Max Teplitski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (isolation & purification)</term>
<term>Biodiversity (MeSH)</term>
<term>Citrus (microbiology)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Microbiota (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>ARN ribosomique 16S (génétique)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (génétique)</term>
<term>Bactéries (isolement et purification)</term>
<term>Biodiversité (MeSH)</term>
<term>Citrus (microbiologie)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Microbiote (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>ARN ribosomique 16S</term>
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Citrus</term>
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Citrus</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Microbiota</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biodiversité</term>
<term>Microbiote</term>
<term>Phylogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused by
<i>Liberibacter asiaticus</i>
,
<i>Liberibacter americanus</i>
, and
<i>Liberibacter africanus</i>
The microbial communities of leaves (
<i>n</i>
= 94) and roots (
<i>n</i>
= 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance of
<i>Liberibacter</i>
spp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship between
<i>Liberibacter</i>
spp. and members of the
<i>Burkholderiaceae</i>
,
<i>Micromonosporaceae</i>
, and
<i>Xanthomonadaceae</i>
This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.
<b>IMPORTANCE</b>
This study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28341678</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00210-17</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00210-17</ELocationID>
<Abstract>
<AbstractText>Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused by
<i>Liberibacter asiaticus</i>
,
<i>Liberibacter americanus</i>
, and
<i>Liberibacter africanus</i>
The microbial communities of leaves (
<i>n</i>
= 94) and roots (
<i>n</i>
= 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance of
<i>Liberibacter</i>
spp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship between
<i>Liberibacter</i>
spp. and members of the
<i>Burkholderiaceae</i>
,
<i>Micromonosporaceae</i>
, and
<i>Xanthomonadaceae</i>
This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.
<b>IMPORTANCE</b>
This study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Blaustein</LastName>
<ForeName>Ryan A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA rblauste@ufl.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lorca</LastName>
<ForeName>Graciela L</ForeName>
<Initials>GL</Initials>
<AffiliationInfo>
<Affiliation>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Julie L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gonzalez</LastName>
<ForeName>Claudio F</ForeName>
<Initials>CF</Initials>
<AffiliationInfo>
<Affiliation>Microbiology and Cell Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Teplitski</LastName>
<ForeName>Max</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Soil and Water Sciences Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="N">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002957" MajorTopicYN="N">Citrus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="Y">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Liberibacter</Keyword>
<Keyword MajorTopicYN="Y">core microbiome</Keyword>
<Keyword MajorTopicYN="Y">pathogen-microbe interactions</Keyword>
<Keyword MajorTopicYN="Y">plant-associated microbiota</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28341678</ArticleId>
<ArticleId IdType="pii">AEM.00210-17</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00210-17</ArticleId>
<ArticleId IdType="pmc">PMC5440699</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2012 May;78(9):3214-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22389379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):5069-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Jan;14(1):4-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22004523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 May 27;6:385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26074945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Oct;6(10):1812-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22534606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Jul 16;10(8):538-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e46802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23056459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Dec 11;4:357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24376437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2006 Oct;53(4):270-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16941245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2016 Jun;120(6):1616-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26909469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2015 Apr;13(4):217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25730701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(14):5018-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2007 May;53(4):524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17356949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 Dec;82(3):736-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22775574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2013 May 23;13:112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23701743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Apr;71(4):1685-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15811990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2014 Aug 21;2:e545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25177538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e34242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22719824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 06;9(8):e103726</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25099168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Feb;6(2):363-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21796220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2010 May;97(4):389-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20352404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2011 Mar;75(3):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21204872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Oct;10(10):999-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 May 27;332(6033):1097-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 May;7(5):335-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 22;8(4):e61217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2009 Jul;58(1):189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19221834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2006 Aug;56(Pt 8):1755-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16902003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(4):953-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):5934-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Jun 20;5:287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24999348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Dec 03;4:355</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):634-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Mar;28(3):212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25514681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Aug;50(2):277-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Mar;75(6):1566-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23457551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jul;76(14):4703-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Jan;103(1):23-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22950737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Apr;68(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 08;8(11):e76331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24250784</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Blaustein, Ryan A" sort="Blaustein, Ryan A" uniqKey="Blaustein R" first="Ryan A" last="Blaustein">Ryan A. Blaustein</name>
</region>
<name sortKey="Gonzalez, Claudio F" sort="Gonzalez, Claudio F" uniqKey="Gonzalez C" first="Claudio F" last="Gonzalez">Claudio F. Gonzalez</name>
<name sortKey="Lorca, Graciela L" sort="Lorca, Graciela L" uniqKey="Lorca G" first="Graciela L" last="Lorca">Graciela L. Lorca</name>
<name sortKey="Meyer, Julie L" sort="Meyer, Julie L" uniqKey="Meyer J" first="Julie L" last="Meyer">Julie L. Meyer</name>
<name sortKey="Teplitski, Max" sort="Teplitski, Max" uniqKey="Teplitski M" first="Max" last="Teplitski">Max Teplitski</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000144 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000144 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28341678
   |texte=   Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28341678" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020